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ABSTRACT

A general version of Fatou's lemma in several dimensions is

presented. It generalizes the Fatou lemmas given by Schmeidler

(1970), Hildenbrand (1974), Cesari-Suryanarayana (1978) and

Artstein (1979). Also, it is equivalent to an abstract variational

existence result that extends and generalizes results by Aumann-

Perles (1965), Berliocchi-Lasry (1973), Artstein (1974) and

Balder (1979) in several respects.
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SIGNIFICANCE AND EXPLANATION

Fatou's Lemma for functions of one variable is an important,

classical tool of real analysis. Less known, but equally

important for a number of applications (e.g. mathematical econom-

ics and relaxed controls) are various attempts at extensions of

this result to several variables. The present paper presents a

general Fatou lemma in several dimensions, equivalent to a varia-

tional existence theorem; the lemma contains most other such known

multidimensional results as a special case.

The responsibility for the wording and views expressed in this
descriptive swumary lies with MRCI and not with the author of
this report.



A UNIFYING NOTE ON FATOU'S LEMMA

IN SEVERAL DIMENSIONS

E. J. Balder

1. Main results.

Let (T,T,.) be a finite measure space and m a prescribed dimen-

sion. Let L m (T,T, ) be the space of all integrable functions

m m + - mfrom T into IR . For any ye E we shall define y ,y in I. by

Cy ) max(y ,0), i = 1,...,m and y = (-y). In this note we : ntrc-

duce a 7-air of ecuivalent existence results, one of which is tre

following version of Fatou's lemma in several dimensions.

Fatou Lemma. Suppose {f I C Lm is such that

(1) f k } is uniformly integrable,

(2) limk ; fk dv exists (in IRm.

Then there exists f* 1E Lm with

(3) f*(t) is a limit point of {f k(t)} a.e. in T,

(4) J' f* dp 4lim k i fk dp.

This lemma generalizes similar results by Schmeidler (1970), HildJen-

brand (1974), Cesari-Suryanarayana (1978) and Artstein (1979).

To begin with, it clearly generalizes Sch:eiciler's ori-inal result;

this is obtained by setting fk = 0 for all k. Further, the result

in Cesari-Suryanarayana (1978, 2.2) follows from it, since by (3)

certainly f*(t) belongs to the closure of (fk(t)} for a.e.t in T.
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[The stronger result in (3) is essential for a lot of applications!]

Moreover, Cesari dnd Suryanarayana require (T,T,p) to be nonatomic.

[Since they do not provide a proof of their version of 'atou's lemma,

it is not possible to determine whether this restriction could be

lifted.] Becauset e original version of Fatou's lemma in Hildenbrand

(1974, p.69) is a special case of the later result by Artstein (1979),

it suffices to show that the latter result also follows from our

version of Fatou's lemma [Hildenbrand (1974) requires additionally

that {fk(t)) be pointwise bounded].

Corollary 1. Suppose {fk } C Lm is such that
k 1

f k )is uniformly integrable,

limk ffk du exists.
Then there exists f * 6 Lm with

f,(t) is a limit point of {fk(t)} a.e. in T,

f f* dU z limk f fk dv.

Proof. Apply the Fatou lemma to {(fk,-fk)}. This gives existence of
2m wih(*() f

(f,-f th (f(t), - f (t)) a limit point of {(fk(t),-fk(t))}

a.e. in T and f f* - lim k f f k f f The former property gives

that f,(t) =f (t) a.e. in T. QED

Before stating other consequences of the Fatou lemma, we shall

need some definitions and notation. Suppose S is a metrizable Lusin

space (alias -tandard Borel space) [Dellacherie-Meyer (1975 , 111.15)1

The Borel a-algebra on S is denoted by B(S).

For instance, every Polish (separable metric complete) space is

metrizable Lusin.
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The set of all Borel measurable functions from T into S is denoted

by M(T;S). A function g : T x S * (--, -] is said to be a normal

integrand on T x S if g is T x 8(S)-measurable and g(t,.) is lower

semicontinuous on S for every t in T. The set of all [nonnegativel

normal integrands on T x S is denoted by G(T;S) [ i3 (T;S)]. The set

of all g EG +(T;S) such that g(t,.) is inf-compact 2 on S for every t

in T is denoted by H(T;S). For any g E G(T;S), u 6 M(T;S) we shall

write

S(u) E f g(t,u(t))u(dt) : f g + (t,u(t))u(dt) - f g (t,u(t))p(dt),g

where g +E max(g,O), g- : max(-g,O), with the understanding that

(+-) - (+=) w by convention. Also, for any g E G(T;S), h E H(T;S)

the symbolism g << h will indicate the following growth property

of h with respect to g E max(-g,O): for every e > 0 there exists

f E such that on T x S

g-(t,x) < ch(t,x) + fC(t).

Now let X ,X2 be metrizable Lusin spaces and n a prescribed

number. We have the following abstract variational existence result

as a consequence of the Fatou lemma. Later, we shall prove a very

weak version of this result from which the Fatou lemma follows.

Hence, the two results are in fact equivalent.

2 I.e., Ix E S : g(t,x) 4 } is compact for every B E R.
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Proposition 1. Suppose {(xk,uk)} C M(T;XIxX 2 ) satisfies

(5) {x k } converges in measure to x0 E M(T;X

(6) suPk lh(uk) < + w for scme h E H(T;X2).

Suppose also that fgl,...,gn} C G(T;X 1xX 2 ) is such that

(7) {g (.,xk(.),uk(.))} is uniformly integrable, i 1,...,n.

Then there exist a subsequence (Uk. } of (uk and u* E M(T;X 2 ) with
]

(8) u*(t) is a limit point of fuk (t)} a.e. in T,
]

h9 *hU) < sup k Ih(Uk),

(10) I (x ,U*) lim infk I (X i
0 i k jku

Proof. Let $ denote the supremum in (6). By (7) {Igi(xkuk)} is

bounded from below by a constant for every i, 1 < i < n. Hence, there

is a subsequence {(xk u)} of {(Xk,Uk)} such that for every i,

1 i n, {IgCX ,u) converges to some Bi E(-c,+w) and
1 i k u

h(X k.U)} to some 'n+lE[0,0]. Rather than extracting a subsequence

once more, we may suppose without loss of generality that

xk (t) - x0 (t) a.e. in T, by (5) [Hildenbrand (1974, p.47)]. Let E

denote the (possibly empty) set of those i, I < i < n, for which

8. < + -. Define fk to consist of e + 1 component functions

gi(., xk(.),uk (.)), iE E, and h(.,uk.(.)). Here e stands for the

J j I
number of indices in E. In view of (7), gi(.,x k(.),uk C.)) is inte-

J j
grable whenever I (xkUk) < + -, so our construction of E givesfg k ke l

e+11 ]
fk. E LI for sufficiently large k.. Now condition (1) of the Fato-i

lemma holds by (7), and (2) holds in view of the choice of

e+1
{(xk.,uk°)}. By the Fatou lemma there exists f, E L such tIat

f*(t) is a limit point of {f (t)} a.e. in T and , f" < 0, for
k.

i E E Ute+1}. It follows that for a.e. t in T there exist a sub-
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sequence k }  {k} - quite possibly depending upon t - such that

gi(t,Xl(t),Ukl(t))- f,(t) for every i E E and with

h(t,UkCt)) fe (t) < + -. By inf-compactness of h(t,.), {uk (t)}
S1 k1

contains a subsequence converging to some ut E X 2 . :ote that u
L t

3
belongs to Q(t) : n cl U fuk(t)1. From the facts that x (t) - x (t)

n k.>n k. k. 0

a.e. in T and that gi(t,.,.) is lower semicontinuous, we conclude

that for a.e.t in T there exists ut ( Q(t) such that

gi(t,x 0(t)U) f*(t), i E E, and h(tut) 4 fe (t). By Himmel-

berg (1975, Theorem 6.1) the graph of the multifunction Q is

easily seen to be T x (X2 )-measurable. Hence, the set of all2i

(t,x) E T x X such that x E Q(t), gi(t,x0(t),x) 4 f (t), i E E,
e+1

and h(t,x) < f* 1 (t) is also T x B(X 2 )-measurable. By Aumann's measurable

selection theorem [Himmelberg(1975,Theorem 5.2)1 there exists uE A(T;X 2 )
i

such that a.e. in. T u,(t)E Q(t), gi(t,x0 (t),u,(t)) < f,(t) for each i E E
and ~t~.(t) • e+l

and h(tu*Ct)) < f Ct). This gives Ih (u) 4 f fe+l 

and Igi(X0,U*) < ai for all i, 1 • i • n, since the inequality holds

trivially when i § E.

Corollary 2.Suppose hEH(T;X2 ) and {g 0 ,g 1 ,.-.,g CG(T;X ) satisfy

() gi < < h, i = 0,1,...,n.

For given constants ,. n'an+1' let M be the set of all

u E M(T;X 2 ) which satisfy the following constraints

(12) gi (u) •4 i, i = 1,...,n and I h(u) < an+I .

Suppose that M is nonempty; then there exists u* E M such that

(13) I (u,) = inf I (u).
g0 u6-M go

Here cl stands for closure.

-5-



Proof. Since M is nonempty, there exists a minimizing sequence

{uk} in M. [That is, I0(Uk) inf I .1 Now (11)-(12) imply the
k go k M g0

validity of (6)-(7). It follows from applying Proposition 1 that

there exist a subsequence {u 0 of {uk } and u* G (T;X 2 ) such that

(8),(9) and (10) hold for i = 0,1,...,n. By our choice of {uk}, u*

then satisfies (12) and (13). QED

Corollary 3. Suppose T is the unit interval [0,11, equipred with

Lebesgue a-algebra and measure. Suppose h E H(T;X 2 ) and

{g0,1,...,gn} IC G(T;X 2 ) satisfy

(14) g- < < h, i = 0,1,...,n.

For given constants l ,...,nn an+1 let M' be the set of all

(t0 ,tl,u) E [0,11 x [0,11 x M(T;X 2 ) which satisfy

ti

(15) f g.(t,u(t)) dt 4a.l i 1,...,n, and Ih(u) 4 an+l"
to 12

Suppose that N' is nonempty; then there exists (t0 ,,t1 ,,u,) E N'

such that
tl. ti

(16) f g(t~u*(t)) dt = inf UI g(t,u(t)) dt : (t,tl,U) E M'}.

to* to

Proof. M' being nonempty, there exists a minimizing sequence

{(tO,k,t1,kUk)) in M'. By compactness of [0,11 x [0,11 we may

sups ls ftht - tI  - t for

suppose without loss of generality that t0,k +0*' 1,k 1*

some t0 , tl in [0,11. Take X1  {0,1} and define xk to be the

characteristic function I(t ,ktl,k) of the interval (tuk't1,k

Define g! E G(T;X XX2 ) by g!(t,x1 ,x2 ) X . g(t,x 2 ). Condition (5)
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of Proposition 1 is fulfilled by the choice of {(t0,k,tl,k)l. For

{gf,...,gn} (6)-(7) hold by virtue of (14)-(15). By Proposition 1

there exist a subsequence {(tO,k j ,tl,k j ,uk )} and u, EM(T;X 2 ) such

that (9) holds for i = 0,1,...,n [and with x0 = 1t 0,,t1 ,). This

shows that (t0*,tl,,u*) has the required properties.
Q ED

Like its counternart, Proposition 1 is a novel result. 'e should

point out that it strongly resembles a classical lower semicontinuity

result for integral functionals; cf. Cesari (1974b), loffe (1977),

Balder (1981b,1982,1983) and their references. There seem to be no

references in the literature on Fatou's lemma that indicate the

reciprocity between this lemma and abstract variational existence

results.

Corollary 2 extends the existence results obtained this far for

a well-known variational problem concerning the optimal selection

of continuous-time allocation plans, to the case where the under-

lying measure space may have atoms. Influenced by Yaari (1964),

the first such result was given by Aumann-Perles (1965) [for T,X2

Euclidean and V Lebesguel. Subsequently, this result was generalized

by Berliocchi-Lasry (1973) [T,X 2 locally compact Polish and p non-

atomic], Artstein (1974) [T abstract, X2 Polish and u nonatomic]

and Balder (1979) [T abstract, X2 metrizable Lusin and v nonatomic].

Corollary 3 deals with a variable consumption period. In its present

abstract form it seems to be anew result. Less abstract versions of

it would turn out to be well-known existence results for optimal
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control with variable time "without convexity"; cf. Cesari (1974a)

and forthcoming work by the present author. [Incidentally, it is

interesting to note that a version of Fatou's lemma in several

dimensions was also used to deal with existence results for optimal

control "with convexity"; cf. Cesari-Suryanarayana (1978), Angell

(1981) .1

2. Proof of the Fatou lemma.

We shall derive the Fatou lemma from a very weak version of

Proposition 1, to be proven here by using what are essentially the

main results of relaxed control theory combined with Lyapunov's

theorem. This would seem to suggest a new approach to the Fatou

lemma. Of course, since Proposition 1 was already shown to follow

from the Fatou lemma, this also establishes the equivalence of this

lemma and Proposition 1.

In the weak version of Proposition 1 presented below, Proposition

C, we shall only need to take X X U={I}, X,, = Im

Observe that these are both locally compact Polish spaces. Before

proving Proposition C we shall introduce some facts, notation and

terminology about relaxed control functions. Practically all of

this can be found in Berliocchi-Lasry (1973) and Warga (1972); in

a more abstract setting it can all be found in Balder (1979

1981 a-b).
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Let S be a locally compact Polish space. Such a space is

countble at infinity, so its Alexandrov (one point) compactification

S is metrizable [Hildenbrand (1974, p.1 5)]. Let p stand for a fixed

compatible metric on S. Define C(S) to be the set of all continuous

functions on S and C (S) to be the set of all elementary functionse

c in C(S) that are of the form c z p(.,x) + y for some x E 5, y E .

Lemma A. For every normal integrand g E G+(T;S) [g E G+(T;S)]

there exist a null set N and sequences {T } in T, {c } in C (S)p p e

such that on (T\N) x S [(T\N) x SI

g(t,x) = sup IT (t) Cp(x).
p

Proof [Cf. Balder (1981a, proof of theorem 1)]. Let [xi } be a

countable dense subset of S and let {r.} be an enumeration of the

rationals. For i,j,k E IN we define ci. k E C (S) by c i r. -ik e ijk -

- kp(xi,.) and set Bik E {t E T: c.j.(X) < g(t,x) for all x G S}.
ij ijk

Then Bijk is the projection of the set of all (t,x) E T x S such

that c ijk (X) > g(t,x) onto T. By a well-known projection theorem

[Castaing-Valadier (1977, 111.23)] , the set Bijk belongs to the

completion of the a-algebra T with respect to p. Hence, there exists

for every i,j,k a set Tijk in T such that Tij k C Bij k and Bi\Ti kiijk ij iA i-1 ijk
contained in a null set Nijk. Using the lower semicontinuity and

nonnegativity of the function g(t,.), it is not hard to see that

supi,j, k 
1 Bijk (t) c ijkX) = g(t,x) on T x S. Taking N to be the

union of all Nik, the result for the first case now follows.

The second case is proven in an entirely similar way.

QED
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Let M(S)[M 4 (S)j be the set of all signed bounded measures [pro-

bability measures] on (§,B(§)). We shall equip these with the

[relative] vague topology o(M(S),C(S)) [Dellacherie-Meyer(1975,

111.54)]. Let L1  L I(TT,;C(S)) be the space of (equivalence

classes of) integrable functions from T into C(§). The topological

dual of LI can be identified with the space L. H L (T,T,p;M(S)) of

(equivalence classes of) essentially bounded Borel measurable

functions from T into M(S) (Ionescu-Tulcea (1969, VII.7);cf. Meyer

(1966, p.301) for a short proof]. More precisely, L. consists of

(equivalence classes of) functions 6 T - M(S)) that are vaguely

Borel and have ess suPt 16(t)I v < + =, where 1.1 denotes the total

variation norm. Let R be the set of (equivalence classes of) Borel

measurable functions 6 T - M(S) such that Z(t) E M+(S) a.e. in T;
1

then evidently R C L.. We shall equip L [R with the [relative]

topology a(La,,L 1 ); note that this makes L. into a Hausdorff locally

convex space. By abuse of notation we write for any 6 E R,

g E G(T;S)

I (6) = fg(t,6(t)) P(dt) 2 f g+(t,6(t)) U(dt) - f g-(t,6(t)) w(dt),

with the provision C+ ) - C+ ) + . Here
+ +g (t,6Ct)) f g4 (t,x) k(t)(dx), etc. It follows easily from Lemma

A that, modulo abuse in our notation, this integral is well-defined.

Our next result forms the centerpiece of relaxed control theory;

cf. Warga (1972, IV), Castaing-Valadier (1977, V.2).
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Theorem B. (i) R is compact and sequentially compact.

(ii) For every A E G (T;g) the function Ia: R - [C,+-] is lower

semicontinuous.

Proof.(i) Compactnes of the closed convex set R in the unit

ball of L, follows by the Alaoglu-Bourbaki theorem [Holmes (1975,

12.D)|. Sequential compactness of R is seen as follows; cf. Nblle-

Plachky (1967), Kirschner (1976). Given a sequence (8kI in R, let

T' be the sub-c-algebra of T generated by {1k}. Since Mt(S) is
k1

metrizable and separable, T'is countably generated. Hence, L'

L (T,T',p;C(S)) is separable, so by Holmes (1975, 12.F) the set

Rt of all (equivalence classes of) T'-measurable functions

T - M+ (S ), is metrizable for the topology a(1',L'), where

' E L (T,T',v;M(S)). Also, R'is compact for (L',Lj). Hence, a

subsequence of {6 k} converges to some 60 E R, in the topology

a(L,L'). It follows easily from the conditional expectation result

of Castaing-Valadier (1977, VIII.32) that this subsequence converges

now also to 6 0 in C(L.,LI ).

(ii) Given g E G+(T;9), we can apply Lemma A. In the notation of

that lemma, define g n.ax[sup 1T cp,0I. Then Aq t g on (T\N) x S.
p~q p

Note that each Aq is a version of an equivalence class in L " Hence,

I is the supremum of a collection of continuous functions on R,g

as follows by applying the monotone convergence theorem.
QED

We are now in a position to prove Proposition C, a weak version

of Proposition 1. Let N IN U{ [} denote the usual Alexandrov

compactification of IN ("addition of point at infinity").
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?roposition C. Suppose {u k } C k(7;]2R ) satisfies

(17) suPk lh(uk) < + - for some h E H(T;. m ).

mm

Suppose also that go E G+(T;IfxJR ) and gl,... ,gn} C G(T;1R )

are such that

(18) gi << h, i = 1,...,n.

Then there exist a subsequence {u k.} of ( k } and u* E M(T;]m ) with
(19) 1 h(U ) < suPk Ih(Uk)t

(20) 1 go(-,u*) < lim inf k  I (kj(ukk] go Uk

(21) Ig i(u) < lim infkj I gi(U k), i = 1,...,n.

Proof. By (17)-(18) the sequences {I 0(ku k)} and

{Igi(Uk)}, i = 1,...,n, are bounded below, so there exists a sub-

sequence {uk } of (uk } such that {I gok(,ukj)} converges to some

80 Eo,] and I gi(u k)} converges to some 8. E(-00,+0].

Secondly, we shall show now that to a subsequence of {u k,

there corresponds a generalized limit 61 E R such that 6 1(t) is a

point measure a.e. in T. Here T 1 denotes the purely atomic part of

(T,T,w)[(a version of) the essential supremum of all atoms]. Let

T o = T\T 1 be the nonatomic part. For S = 1 m we shall apply Theo-

rem B to the case where (T,T,p) is replaced by (T 0 ,T0 ,U). 0 Here

To = T0 , p = ViIT0 Also, we write correspondingly , 11, i ,

etc. The Alexandrov compactification of S E Rm is denoted by

M=m Sne m m asIR Im U{w}. Since I is open in m, each function ukT also

belongs to M(T0; m ). Hence, the mapping t [point mass at u (t)]

-12-



defines (a version of) an element e in R0 . By Theorem B(i)uk

{u k has a subsequence {u k such that {E } C k0 converges to

some 6 E R0 in the topology O(LL 0 ). We can split T1  into at
0 Go 11

most countably many atoms A. (modulo null sets this decomposition

is unique). Every function u is equal to a constant u
j E Rm

almost everywhere on an atom A..J

By Lemma A, applied to h, there corresponds to each atom A. an

inf-compact function h. : mm -. [0,+-I such that h(t,.) = h for

a.e. t in A . [Note that the restrictions of the functions 1T
p

to A. are a.e. constant zero or constant one.] By (17) we have)

for each A. that suPk I h (u
k ) 8/i(A.), where 8 supk Ih(uk).

By inf-compactness of hi, each sequence {u3 } has a subsequence
k1

converging to some uj GERm. By an obvious diagonal extraction

argument it follows that a subsequence {uk I of {u k} exists withkr

the following properties: for every j, {ui } converges to uj E Rm
k r

and { } C converges to 6 E in a(LZo). Define 6 E Rbyk r

61 (t) E 60(t) if t E To, 61 (t) E [point mass at u j if t E A.

By the simple nature of the weak star topology of

L.(TVTITjuITj;MCim )), it is easy to check that Eu k I C R (so with
r

domain extended to T) converges to 61 in O Ll).

Thirdly, we shall show that (19)-(21) hold with u* replaced

by 6 Define h e (T;m ) by h(t,x) S h(t,x) if x E Im and

h(t,w) +. [By definition of the topology on m , lower se-_i-

continuity of h(t,.) on im is equivalent to inf-compactness of

-13-



h(t,.) on IRm.] By Theorem BUii) I(61)• lim infk l(U)

lim inf k  I hu ) 8 < + -. Hence, for a.e. t in T the point w
k hkr

"at infinity" cannot belong to the carrier of the probability

measure 61 (t). By the above this implies that I h(6 ) ZI(6 ) < a%hih

which proves (19) with u* replaced by 6 . Applying Lemma A with

S =_ IR X m , equipped with the sum p1 + P2 of compatible metrics

P1 on and p2 in im, we find that there exist a null set N,

sequences T p} C T and c p} C Ce (T;Nx)R ) such that g0 (t,k,x)

supp 14t) c p(k,x)on(T\N) x J x]Rm .
p

Define 9q E max(sup I T P c, 0); since elementary functionals
q <q pP

are Lipschitz-continuous, it follows that for each q there exists

K > 0 such that
q

~q (t,k,x) - (t,k',x')I < Kq[ 1 (k,k') + p 2 (x,x')1

on T x IN x )m . Now by the monotone convergence theorem

I g(krukr) = limq t I q(k ,u kr) and 10(W,61 ) = limq t I9q (,61),

where the latter identity follows from the fact that 6 1(t) is not

supported by w for a.e. t in T. In view of this, it is enough to

prove that lim infk rIq (kr,uk r) > Iq (W,61) for arbitrary q E IN.

By Lipschitz continuity of q (t,.,.) it follows that

qq

I(kr u ) - I.. (m,6) )' - K p Ck ,oo) + ( C,u k )
I~ Ur gq 1 q+ Iq kr

- l~q (,61).

Since {c } is known to converge to 61 and since (t,x) q q(t,-,x)

clearly belongs to G+(T;R m ), it follows from Theorem B(ii) that

(20) holds with u* replaced by 6 For every i 1 1,...,n, E > 0

-14-



there exists by (18) a function f., EL such that

gi = gi + ch + f. is nonnegative, whence belongs to G+(T;lM ).

By applying Lemma A in the usual way it follows that there exist a

null set N€ and i C;e

on (T\N) x Im. Define R(h) to be the set of all 6 6 R such that£

I(6) 4 0. It is elementary to prove that for every 6 e R(h)

sup~ 1 gi1 (6) - - f f. I, i = 1,...,n.

[Note that for every 6 E R(f) the point w is not carried by 6(t)

for a.e. t in T.) By Theorem B(ii) this means that I is lowergi

semicontinuous on R(h). Hence (21) holds with u* replaced by 6
1

Lastly, the proof is finished by showing that there exists

u 6 M(T;JRm) such that

~ Ig 0 (w,6) and I (u,) < I(6) 1 = 1,...,n.Ig0( 90*1 gi gi

No harm is done if we denote from now on g0 (t,-,x) as g0 (t,x).

For i 0,1,...,n we write

10 (6 fT gi(t,61 (t)) p(dt), etc.gi I T 0 1

Define R (R) to be the set of all 6 E R such that Ih(6) < 0.

By Theorem Bi) R 0 () is compact in R . It is clear from the pre-

vious step that 10 is lower semicontinuous (and affine) on R (h)

for i = 0,1,...,n. Hence, the set P of all 6 E R 0 () with

10 (6) • 10 (6 ), 0 < i < n, is nonempty and compact. Therefore,gi gi

it contains an extreme point of 6, by the Krein-Milman theorem.

By a consequence of Caratheodory's theorem 6* is a convex combi-

-15-



nation of at most n + 2 extreme points in R0 (h) [Berliocchi-Lasry

(1973, Proposition 11.2)]. By the same result, every extreme point

of k0 (h) is the convex combination of at most two extreme points

-0in R . By Himmelberg (1975, Theorems 5.2, 9.3) there corresponds

to every extreme point 6 in i0 a function u E M(T 0 ;.m ) such that

6(t) = C(t) a.e. in T . We conclude that there exist at most

2n + 4 coefficients a. > 0 and associated v. E M(T ;Im ), such that
J j 0

lat 1 and 6 = ZctEv. Since 6* E R0 (h), we also know that for

a.e. t in T the measure 6*(t) is not carried by w. Hence, all v.

can be supposed to belong to M(T0 ;IRm). Writing temporarily

gn+l 7 h, we find that

2. a 0 (v.) = 10 ( 6 * ) 0 (6), i = 0,1,...,m+.

By a well-known extension of Lyapunov's theorem there exists

V* E M(T 0;m) with 1 (6,) 10 (v*), i = 0,1,... ,m [Castaing-gi gi

Valadier (1977, IV.17)]. Now define u* E M(T;IR ) by u*(t) = v.(t)

on To, u*(t) =_ u* on A. Then combining the above steps gives

that (19)-(21) hold. QED

Proof of the Fatou Lemma. Let us apply Proposition C to the

following case. Take n = 3m. Define go as follows. For p * +

define g0 (t,p,x) 0 if x E clkj* {uk (t)) and g0 (t,p,x) 2 +-J J

if not. For p = + define g0 (t,-,x) = 0 if x E ' :01

and g0 (t,-,x) E + if not.

-16-



Measurability of g0 follows by applying Himmelberg (1975, Theorem

6.1) And it is not hard to verify that g0 (t,.,.) is lower semi-

continuous on x IRm . Hence go ' G+(T; ×xm ). Define gl,. .. ,gm
by g,tx) gm+l,...,2m by g m+i(t,x) C(x)i and

g2m+l,...g3m by g2m+i(t,x) = -(x-) 
i . Clearly all gi, 1 4 i < 3m,

belong to G(T;]mR). Now by de la Vallee-Poussin's theorem

(Dellacherie-Meyer (1975 , 11.22)] it follows from (1) that there

exists a lower semicontinuous h' : R+ - R+ such that

Ci) SUPf I h'(If k ) du < +-,

(ii) h'(8) / 8 0 + - as 8 - + .

Define now h(t,x) x+I + h'(ix-I). Then (17) is valid by (2)

and (i). Also, (ii) implies that (18) holds. By an application of

Proposition C it follows that there exist a subsequence {f k ofk

{fk )and f* E M(T;]R ) such that (19)-(21) hold mutatis mutandis.

Now (19) implies that f* is integrable, (20) implies (3) and it

follows from (21) that

I f lm I f+ f lim inf f f
f ; " i k' ink. ~k j

A fortiori (4) follows, in view of (2). QED
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